Share with your friends


Analytics Magazine

Return on Investment: Turbocharging analytics project adoption

Three critical mindsets – business case, entrepreneur’s and adoption – close the gap between big data investment and production.

Shashank DubeyBy Shashank Dubey

Analytics has gone mainstream in large enterprises. Walking around the office halls, you hear talk of tensor flow, DNN, artificial intelligence (AI) and machine learning (ML), but there is still a large gap between expected and realized ROI from analytics projects.

While you might think technology is the hardest part of an enterprise analytics project, most don’t fail due to inefficient neural networks or bad machine-learning models. They fail because of people.

Research shows that the worldwide revenues for big data and business analytics will grow to more than $203 billion in 2020, with a compound annual growth rate of 11.7 percent. A Gartner survey shows that only 30 percent of organizations have invested in big data, of which only 8 percent have made it into production. That gap indicates that projects are stopped short of delivering their potential.

To close the gap, we suggest enterprises consider a three-point mindset framework consisting of: 1) business case mindset, 2) entrepreneur’s mindset, and 3) adoption mindset.

Business case mindset. Recently, a leading e-commerce marketplace approached us, looking for help reducing customer churn. But not all churn is bad; what it really needed was to retain its profitable customers.

“What the business wants versus what the business needs” is a common refrain in large enterprises. In this case, the business wants to reduce churn, but it needs to retain profitable customers. As data scientists, we are forever ready to pounce at a problem and solve it to completion. But if we don’t take the time to evaluate the business case, we could be off solving the wrong problem. This calls for three perspectives: proof of concept, proof of value and proof of implementation.

Proof of concept takes on the lens of a data scientist. We need to examine constraints of data, algorithms and engineering. The question being explored here is whether the problem is solvable given the finite resources at our disposal, including time.

Proof of value takes on the lens of a finance controller. The problem here is being evaluated from the perspective of financial ROI, with the question, “Is the problem worth solving?”

Proof of implementation takes on the lens of an engineer. The big question being addressed: “Is the solution implementable?”

Most of us use one or two of the above lenses but rarely all three – and they are all critical. This is the first phase of the project, which we call conceptualization – the “thinking” phase. The next phase of the project is the “doing” phase. This is where the potential discovered in the thinking phase needs to become real. Here you need an entrepreneur’s mindset.

Proof of implementation takes on the lens of an engineer. The big question to address: Is the solution implementable? Photo Courtesy of

Proof of implementation takes on the lens of an engineer. The big question to address: Is the solution implementable? Photo Courtesy of

Entrepreneur’s mindset. Imagine your project is to build a car for a client who has never seen one before. The client is going to drive the car you build. She is understandably anxious and needs to be involved in the build process. There are two ways you can execute (assuming you know how to build cars) – you can start from scratch or you can start with a prototype.

In the first approach, you may start with showcasing a chassis and then in stages add tires, steering mechanism, engine, etc. This is how cars get built on a shop floor.

In the second approach, you start with showcasing a prototype. This prototype looks like a real car except that none of its components work. You gradually keep on replacing the dummy components with real ones, evolving the overall design on the go. This is how successful products (and companies) get built. We need this entrepreneur’s mindset to execute analytics projects.

Entrepreneurs also distinguish themselves by prioritizing outcomes over tasks. They seldom land in “operation successful, but patient dead” situations. Here, the outcome mindset warrants the need for effective stakeholder synergies.

But before we get there we need to ask ourselves: Who is the ultimate stakeholder? In most enterprises, there are many proximate stakeholders: analytics leaders, company executives, IT group, etc. However, the ultimate stakeholder – the frontline manager – is often discounted. Ideally, your frontline managers must be the loudest voice in key conversations. But in reality, in most cases they don’t even have a seat at the table. Effective synergy among analytics, executives, IT and frontline managers is the cornerstone of outcome mindset.

The next step is the adoption phase.

Adoption mindset. This last lap is critical. A shiny toy that does the job doesn’t guarantee frontline adoption. Simplicity, scale and integration will need to triangulate here.

Simplicity must be approached from the end user’s perspective. Your analytics solution should make the end user decision-making simpler and faster, not just more accurate. The solution must also be scalable enough to seep across frontline managers who can leverage the solution when and where they want. And finally, the solution must be one that can seamlessly integrate into legacy systems, with minimal resistance and orientation. Nobody wants another app.

In today’s world, analytics is not a luxury; it is basic hygiene. But analytics is not just the work of numbers. Humans are ultimately responsible for the uptake. Keeping the three mindsets in mind – business case, entrepreneur’s and adoption – will help ensure you can convert analytics projects into profitable ROI.

Shashank Dubey is the co-founder and head of analytics at Tredence, an analytics services and solutions company. With more than 13 years of research and consulting experience in applied mathematics and analytics, he has provided analytics consulting across multiple industries – retail, telecom, technology, online marketplace, airline and healthcare – and for clients including Facebook, eBay and Dell.

Analytics data science news articles

Related Posts

  • 75
    The CUNY School of Professional Studies is offering a new online master of science degree in data analytics. The program prepares its graduates for high-demand and fast-growing careers as data analysts, data specialists, business intelligence analysts, information analysts and data engineers in such fields as business, operations, marketing, social media,…
    Tags: data, analytics, business
  • 71
    Benjamin Franklin offered this sage advice in the 18th century, but he left one key question unanswered: How? How do you successfully drive a business? More specifically, how do you develop the business strategy drivers that incite a business to grow and thrive? The 21st-century solution has proven to be…
    Tags: data, analytics, business
  • 70
    “Drive thy business or it will drive thee.” Benjamin Franklin offered this sage advice in the 18th century, but he left one key question unanswered: How? How do you successfully drive a business? More specifically, how do you develop the business strategy drivers that incite a business to grow and…
    Tags: data, business, analytics
  • 63
    September/October 2018 Analytics revolutionizing healthcare Values that should guide AI revolution The future role of AI in fact checking Data science at Monsanto Strengthening global supply chains July/August 2018 Why optimization models fail AI: Path to an intelligent enterprise How to truly listen to customers Close the deal: marketing &…
    Tags: analytics, data
  • 61
    Most business leaders today believe in the value of using data and analytics (D&A) throughout their organizations, but say they lack confidence in their ability to measure the effectiveness and impact of D&A, and mistrust the analytics used to help drive decision-making, according to a new survey from KPMG International.
    Tags: analytics, data, business


Using machine learning and optimization to improve refugee integration

Andrew C. Trapp, a professor at the Foisie Business School at Worcester Polytechnic Institute (WPI), received a $320,000 National Science Foundation (NSF) grant to develop a computational tool to help humanitarian aid organizations significantly improve refugees’ chances of successfully resettling and integrating into a new country. Built upon ongoing work with an international team of computer scientists and economists, the tool integrates machine learning and optimization algorithms, along with complex computation of data, to match refugees to communities where they will find appropriate resources, including employment opportunities. Read more →

Gartner releases Healthcare Supply Chain Top 25 rankings

Gartner, Inc. has released its 10th annual Healthcare Supply Chain Top 25 ranking. The rankings recognize organizations across the healthcare value chain that demonstrate leadership in improving human life at sustainable costs. “Healthcare supply chains today face a multitude of challenges: increasing cost pressures and patient expectations, as well as the need to keep up with rapid technology advancement, to name just a few,” says Stephen Meyer, senior director at Gartner. Read more →

Meet CIMON, the first AI-powered astronaut assistant

CIMON, the world’s first artificial intelligence-enabled astronaut assistant, made its debut aboard the International Space Station. The ISS’s newest crew member, developed and built in Germany, was called into action on Nov. 15 with the command, “Wake up, CIMON!,” by German ESA astronaut Alexander Gerst, who has been living and working on the ISS since June 8. Read more →



INFORMS Computing Society Conference
Jan. 6-8, 2019; Knoxville, Tenn.

INFORMS Conference on Business Analytics & Operations Research
April 14-16, 2019; Austin, Texas

INFORMS International Conference
June 9-12, 2019; Cancun, Mexico

INFORMS Marketing Science Conference
June 20-22; Rome, Italy

INFORMS Applied Probability Conference
July 2-4, 2019; Brisbane, Australia

INFORMS Healthcare Conference
July 27-29, 2019; Boston, Mass.

2019 INFORMS Annual Meeting
Oct. 20-23, 2019; Seattle, Wash.

Winter Simulation Conference
Dec. 8-11, 2019: National Harbor, Md.


Advancing the Analytics-Driven Organization
Jan. 28–31, 2019, 1 p.m.– 5 p.m. (live online)


CAP® Exam computer-based testing sites are available in 700 locations worldwide. Take the exam close to home and on your schedule:

For more information, go to