Share with your friends


Analytics Magazine

Forum: A conceptual framework for BI/analytics strategies

Based on research and best practices, the framework aims to bring clarity to the field.

Jay LiebowitzBy Jay Liebowitz

Business intelligence (BI) and analytics programs are among the “hottest” curricula being developed at universities and colleges worldwide. Definitions vary on what entails business intelligence or analytics, and there doesn’t seem to be a universal BI/analytics conceptual framework that is being used by organizations and universities to develop their BI/analytics strategy and associated roadmap. To provide some clarity and based on research and best practices in the field, I developed the BI/Analytics Conceptual Framework as shown in Figure 1.

Figure 1: BI/analytics conceptual framework. Framework author Jay Liebowitz used a Delphi survey of experts for verification. The red items indicate the more important factors based on the surveyed experts.

Figure 1: BI/analytics conceptual framework. Framework author Jay Liebowitz used a Delphi survey of experts for verification. The red items indicate the more important factors based on the surveyed experts.

In order to better understand if these are the right components, I reached out to some BI/analytics experts in industry and universities as part of a Delphi survey. Some of the preliminary comments from those experts in this first round include:

  • Analytics skills mature over time within organizations, suggesting the value of incorporating a CMM (capability maturity model) in your framework.
  • Other business and IT drivers might include: different skill levels in working with voluminous data; visibility into competitors’ moves so competitive responses can be developed; being able to combine customer-provided data with other information we have about those same customers; curating and filtering information into “need to know” slices so confidentiality and privacy are protected.
  • Other BI enablers may include: analytics to become trusted advisors to senior executives (this requires more than technical analytic skills – it requires deep understanding of the business and marketplace, strong influencing and relationship-building skills, organizational savvy, effective storytelling and visualization skills, and a willingness to present candidly even unwelcomed information); organizational design can help or hinder the impact of analytic investments; problem definition and problem prioritization.
  • Other BI/analytics strategy goals: reduce speculation and judgment bias that affect objectivity and barriers imposed by “hidden” factors in the decision-making process.
  • Other BI/analytics success factors: define problems correctly (digging and not just reviewing the surface); preparedness for the analytics process (collaboration); management of expectations about outcomes of analytics processes; applicability of the results; connect key risk indicators with key performance indicators.

The second round with the Delphi experts identified the red highlighted factors in Figure 1 as being the most important in the framework. Before going ahead in further revising the conceptual framework, I would be curious in getting your feedback as to the accuracy and completeness of this proposed BI/analytics conceptual framework.

I welcome input and thoughts. Send comments to

Jay Liebowitz ( is the DiSanto Visiting Endowed Chair in Applied Business and Finance at Harrisburg University of Science and Technology in Harrisburg, Pa. He is a member of INFORMS.

Related Posts

  • 62
    November/December 2010 In their 2007 book, “Competing on Analytics: The New Science of Winning,” Tom Davenport and Jeanne Harris captured for many the powerful potential of analytics to provide organizations with a competitive advantage. The book’s title called analytics a “new” science, but concepts and terms such as “business analytics”…
    Tags: analytics, business, intelligence
  • 57
    On one end of the spectrum, labeled “Do Stuff,” organizations focus on action taking, a laissez-faire approach to project management, with little documentation and loosely defined deliverables, timelines and budgets. On the other end, labeled “Buttoned Up,” organizations take a disciplined approach to planning, monitoring and executing projects, with documentation…
    Tags: analytics, intelligence, business
  • 55
    January/February 2011 CLICK HERE TO GO TO THE DIGITAL VERSION OF THIS ARTICLE The journey from what to who, when and why. By Talha Omer The other day, my analytical team at a major telecommunications company and I were presenting an all-new behavioral segmentation to one of our senior executives.…
    Tags: analytics, bi, business, intelligence
  • 54
    A quick quiz: What is a good nine- or 10-letter description of the emerging interest in business analytics and big data that ends in “-al”? A choice that may come to mind for many is “hysterical.” This choice reflects frenzied excitement about opportunities for business analytics to solve problems often…
    Tags: analytics, business, intelligence
  • 50
    The information explosion has led organizations to leverage data to improve the overall decision-making process. Organizations are looking to deploy data-driven strategies across their business processes and functions, such as marketing, risk, supply chain and finance. It’s critical now more than ever to have the right people, processes, methodologies, platforms…
    Tags: analytics, business, organizations

Analytics Blog

Electoral College put to the math test

With the campaign two months behind us and the inauguration of Donald Trump two days away, isn’t it time to put the 2016 U.S. presidential election to bed and focus on issues that have yet to be decided? Of course not.



Gartner: AI technologies to be pervasive in new software products

Market hype and growing interest in artificial intelligence (AI) are pushing established software vendors to introduce AI into their product strategy, creating considerable confusion in the process, according to Gartner, Inc. Analysts predict that by 2020, AI technologies will be virtually pervasive in almost every new software product and service. Read more →

Drone delivery: Professor develops solution to minimize delays in operations

When delivery companies like FedEx, Amazon and UPS launch drones to deliver packages in the near future, one Kennesaw State University computer science professor may be at the crux of solving one of its most complicated problems. Donghyun (David) Kim, assistant professor of computer science and an expert in computer algorithm optimization, is designing a fast-running algorithm to tackle simultaneous coordination problems among multiple delivery trucks and the drones launched from them. Read more →

Tech spending growth limited to about 5 percent through 2018

Forrester predicts U.S. business and government tech spending will continue to grow by 4.8 percent through 2017 and increase to 5.2 percent in 2018. While these forecasts are higher than Forrester’s projections following the 2016 presidential election, they are lower than the expected numbers from a year ago. Read more →



Essential Practice Skills for High-Impact Analytics Projects
Sept. 26-27, Executive Conference Center, Arlington, Va.

Foundations of Modern Predictive Analytics
Oct. 2-3, VT Executive Briefing Center, Arlington, Va.

2017 INFORMS Annual Meeting
October 22-25, 2017, Houston

2017 Winter Simulation Conference (WSC 2017)
Dec. 3-6, 2017, Las Vegas


CAP® Exam computer-based testing sites are available in 700 locations worldwide. Take the exam close to home and on your schedule:

For more information, go to