Share with your friends


Analytics Magazine

Executive Edge: Graph databases, journalists & the Panama Papers

Mining huge data sets: The powerful technology behind one of the biggest data leaks in history.

Emil Eifrem is co-founder and CEO of Neo Technology, developers of the graph database Neo4j.By Emil Eifrem

The Panama Papers, the unprecedented leak of 11.5 million files from the database of the global law firm Mossack Fonseca, opened up the offshore tax accounts of the rich, famous and powerful – laying bare how they have exploited secretive offshore tax regimes for decades. At 2.6 terabytes of data, the Panama Papers is the biggest data leak in history, towering over the U.S. diplomatic cables released by WikiLeaks in 2010, or more recently, intelligence documents handed over by Edward Snowden.

The investigation into the Panamanian law firm’s dealings and that of its elite clients was the direct result of work carried out by journalists at The International Consortium of Investigative Journalists ( More than 370 reports from 80 countries worked on the data for a year, such was its scale. As part of its endeavors, the ICIJ also released a searchable database of 300,000 entities harvested from the Panama Papers and its offshore leaks investigation.

Key Takeaways

The Panama Papers displayed the murky side of offshore accounts, identifying high-ranking government and public officials and pushing some out of office. But another major aspect that stands out is the power of the data itself and how it was sifted. It wasn’t searched and manipulated by experienced data scientists, but by a team of journalists, many of whom would not identify themselves as very technical.

How did the journalists manage to pick out meaningful data from such huge, unstructured files? The answer is graph database technology, which enabled journalists to surface connections between the data, much like joining the dots, to form a picture.

Mar Cabra, head of the data and research unit at the ICIJ, has described graph database technology as “a revolutionary discovery tool that’s transformed our investigative journalism process.”

The unique skill of graph databases is their ability to spot and understand relationships between data at huge scale. Graph databases utilize structures made up of nodes, properties and edges to store data, unlike relational databases, which store the information in rigid tables. Graph databases then map the links between required entities.

This is a boon for investigative journalists, but it is also a powerful tool for any business looking to tackle big data and connected data issues.

Graph Connections

Graph databases are an excellent way to make sense of the terabytes of connected data in an efficient manner. Why? Because unlike relational databases, which break data down into tables, graph databases use a notational structure that mimics the way humans intuitively look at information. Once the data model is coded in a scalable architecture, a graph database is unbeatable at analyzing the connections in large, complex data sets. This enables any business to build and manipulate big data structures easily.

Tech giants such as Google, Facebook and LinkedIn have recognized the power of graph databases for some time. For example, Facebook and LinkedIn’s tools for mapping real-time networks and connections that let us walk through social networks are founded on graph technology. Now that graph database technology has started to go mainstream, this highly scalable connected data analysis is available to all organizations, from startups to blue chips and government.

Graph databases are set to come into their own with the Internet of Things (IoT), where billions of connected devices mean dealing with petabytes of data. Graph databases will enable enterprises to mine data in ways that just aren’t possible using data warehouses and relational database technology. Graph technology is increasingly becoming the tool of choice for international agencies, governments, financial services companies and enterprises looking to make real-time connections between data and discover the patterns that make up their relationships.

We will undoubtedly be hearing more about the power of graph databases in the business world as more and more organizations latch on to the unique capabilities it offers.

Emil Eifrem is co-founder and CEO of Neo Technology (, developers of the graph database Neo4j.

Analytics data science news articles

business analytics news and articlesAnalytics data science news articlesSave

Related Posts

  • 62
    International Data Corporation (IDC) recently released a worldwide Big Data technology and services forecast showing the market is expected to grow from $3.2 billion in 2010 to $16.9 billion in 2015. This represents a compound annual growth rate (CAGR) of 40 percent or about seven times that of the overall…
    Tags: data, big, technology
  • 59
    March/April 2013 By Vijay Mehrotra As described in the previous edition of Analyze This!, I am currently working on a research study with Jeanne Harris at Accenture’s Institute for High Performance. Specifically, we are seeking to develop a quantitative and qualitative understanding of the current state of analytics practice. If…
    Tags: data, big, visualization, mining
  • 57
    Features Visualizing machine-learning analysis In the journey from analysis to data-driven outcomes, data visualization presents data in a powerful and credible way. By Navneet Kesher Calling the smart way Big data analytics increase call center productivity and reduce unwanted phone calls by calling at the right time. By Douglas A.…
    Tags: data, big, visualization
  • 56
    Organizations of all sizes and types are awash in data possibilities, yet most of them cannot capitalize on the potential for a variety of reasons. The good news, however, is that with the right decisions and focus, these possibilities can turn quickly into realized opportunities.
    Tags: data, technology, big
  • 55
    Features New paradigm: Service as a Software Leveraging the interconnectedness of business problems to accelerate better decision-making. By Deepinder Dhingra Journey from CSP to DSP Text mining will play a pivotal role in the transition from communications service providers to digital service providers. By Somnath De, Saibal Samaddar and Upasana…
    Tags: data, big, mining


Fighting terrorists online: Identifying extremists before they post content

New research has found a way to identify extremists, such as those associated with the terrorist group ISIS, by monitoring their social media accounts, and can identify them even before they post threatening content. The research, “Finding Extremists in Online Social Networks,” which was recently published in the INFORMS journal Operations Research, was conducted by Tauhid Zaman of the MIT, Lt. Col. Christopher E. Marks of the U.S. Army and Jytte Klausen of Brandeis University. Read more →

Syrian conflict yields model for attrition dynamics in multilateral war

Based on their study of the Syrian Civil War that’s been raging since 2011, three researchers created a predictive model for multilateral war called the Lanchester multiduel. Unless there is a player so strong it can guarantee a win regardless of what others do, the likely outcome of multilateral war is a gradual stalemate that culminates in the mutual annihilation of all players, according to the model. Read more →

SAS, Samford University team up to generate sports analytics talent

Sports teams try to squeeze out every last bit of talent to gain a competitive advantage on the field. That’s also true in college athletic departments and professional team offices, where entire departments devoted to analyzing data hunt for sports analytics experts that can give them an edge in a game, in the stands and beyond. To create this talent, analytics company SAS will collaborate with the Samford University Center for Sports Analytics to support teaching, learning and research in all areas where analytics affects sports, including fan engagement, sponsorship, player tracking, sports medicine, sports media and operations. Read more →



INFORMS Annual Meeting
Nov. 4-7, 2018, Phoenix

Winter Simulation Conference
Dec. 9-12, 2018, Gothenburg, Sweden


Applied AI & Machine Learning | Comprehensive
Starts Oct. 29, 2018 (live online)

The Analytics Clinic
Citizen Data Scientists | Why Not DIY AI?
Nov. 8, 2018, 11 a.m. – 12:30 p.m.

Advancing the Analytics-Driven Organization
Jan. 28–31, 2019, 1 p.m.– 5 p.m. (live online)


CAP® Exam computer-based testing sites are available in 700 locations worldwide. Take the exam close to home and on your schedule:

For more information, go to